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Abstract: We study cooperative and competitive solutions for a many-
to-many generalization of Shapley and Shubik [9]’s assignment game. We
consider the Core, three other notions of group stability and two alterna-
tive definitions of competitive equilibrium. We show that (i) each group
stable set is closely related with the Core of certain games defined using a
proper notion of blocking and (ii) each group stable set contains the set of
payoft vectors associated to the two definitions of competitive equilibrium.
We also show that all six solutions maintain a strictly nested structure.
Moreover, each solution can be identified with a set of matrices of (dis-
criminated) prices which indicate how gains from trade are distributed
among buyers and sellers. In all cases such matrices arise as solutions
of a system of linear inequalities. Hence, all six solutions have the same
properties from a structural and computational point of view.
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1 Introduction

Gale and Shapley [3] introduce ordinal two-sided matching models to study assign-
ment problems between two disjoint sets of agents. In the marriage model, where
matchings are one-to-one, each agent has to be matched to at most an agent on the
opposite set. It is assumed that each agent has strict ordinal preferences over the
set of agents that he does not belong to plus the prospect of remaining unmatched.
These models are ordinal and money do not play any role; in particular, money can
not be used to compensate an agent in the case he has to be matched to an agent
at the bottom of the agent’s preference list. Ordinal models have been enormously
useful and extensively used in Economics to study situations where the assignment
problem has only one issue: who is matched to whom.! In these models, and given a
preference profile (a preference for each agent), a matching is stable if it is individually
rational (no agent is assigned to a partner that is worse than to remain unmatched)
and pair-wise stable (there is no pair of agents that are not matched to each other
but they would prefer to be so rather than to be matched to the partner proposed
by the matching, or to one of them if the agent is a college). Gale and Shapley [3]
show that, for every preference profile, the set of stable matchings is non-empty and
it coincides with the Core of the associated cooperative game with non-transferable
utility (and hence, coalitions with two or more agents from the same set of agents do
not have additional blocking power).2

However, there are many assignment problems (solved by markets) where money
plays a significant role; for instance, through salaries or prices. Hence, in those cases
agents’ preferences may be cardinal. But then, to describe a solution of the problem
(in particular, to unsure its stability) it is not sufficient to specify the matching
between the two sides of the market because it is also required to describe how each
pair of assigned agents share the gains of being matched to each other. Shapley and
Shubik [9] propose the assignment game as an appropriated tool to study one-to-one
matching problems with money (i.e., with transferable utility). The prototypical and
most simple example of an assignment game is a market with sellers and buyers in
which each seller owns one indivisible unit of a good and each buyer wants to buy
at most one unit of one good. This setting differs from the marriage model of Gale
and Shapley [3] by the fact that there exists money used as a means of exchange. In
addition money is also used to determine buyers’ valuations (or maximal willingness
to pay) of each unit of the available goods and sellers’ reservation prices (or minimal
amounts at which they are willing to sell the unit of the good they own). Shapley
and Shubik [9] show that the assignment game has, among others, the following

'Roth and Sotomayor [8] contains a masterful presentation of the most relevant matching models
and some of their applications.

?Knuth [5] shows that the set of stable matchings is a (dual) complete lattice with the unanimous
partial ordering of the agents in one set.



properties. (i) There exists at least one competitive equilibrium price vector, with a
price for each of the goods, and an assignment between buyers and sellers such that,
at those prices, each buyer is assigned to the seller that owns the good (namely, the
buyer buys the unit of the good that the seller has, and pays its price) that gives
him the maximal net valuation (the difference between his valuation and the price of
the good). (ii) The set of competitive equilibrium payoffs coincides with the Core of
the cooperative game with transferable utility induced by the assignment game. (iii)
The Core coincides with the set of individually rational and pair-wise stable payoff
vectors. In this model, a solution is not only an assignment (who buys to whom, or
equivalently, who sells to whom) but it is also a description of how each assigned pair
of agents splits the gains generated by their trade.?

Sotomayor ([10], [11], [12], [13], [14], and [15]), Camina [1], Milgrom [7], Fage-
baume, Gale and Sotomayor [2], Jaume, Massé and Neme [4] and Massé and Neme
[6] are some of the papers that extend the one-to-one Shapley and Shubik [9]’s assign-
ment game by allowing that buyers can buy different goods and/or that sellers can
own and sell units of different goods to different buyers. Most of those papers show
that some of the properties of the one-to-one model also hold for the generalized ver-
sions. In addition, most of the previously cited papers propose and study cooperative
solution concepts that are natural in the many-to-one or many-to-many contexts. The
Core is the most studied solution concept. Given a payoff vector and an associated
assignment (the payoffs are obtained after distributing among players the net gains
generated from each trade specified by the assignment) a coalition Core-blocks the
payoff vector if all its agents, by breaking all their trades with all agents outside the
coalition, may improve upon their payoffs by reorganizing new trades, performed only
among themselves. The Core is the set of payoff vectors that are not Core-blocked
by any coalition.

However, in this setting there are other alternative notions of group stability. They
differ on the type of transactions that agents in a blocking coalition are allowed to
perform with agents outside. That is, the notions depend on how sale contracts have
been specified and hence, on how they can be broken. The Core concept assumes that
agents in a blocking coalition can only trade among themselves, without being able
to keep any trade with agents outside the blocking coalition; thus, when a coalition
of agents Core-blocks a proposed payoff vector they have to break all contracts with
agents outside the coalition. In the group stability notion defined in Mass6é and Neme
[6] it is assumed that sale contracts are unit-by-unit. A trade of a unit of a good
between a buyer and a seller is performed independently of the other traded units
of the same good as well as of the traded units of the other goods. An agent of a
blocking coalition can reduce (but not increase) the trade, with members outside the

30Observe that competitive equilibrium assignments are optimal in the sense that they maximize
the sum of all net gains. Thus, and since they are solutions of a linear problem, they are generically
unique.



coalition, of a given good in the number of units that he wishes, but without being
forced for this reason to reduce neither the number of traded units of the same good
nor the number of units of the other goods. In this paper we consider the other two
alternative notions of group stability. They are more appropriated for those cases
where sale contracts are written good-by-good or globally. In the good-by-good case,
the sale contract between a buyer and a seller includes all traded units of only one
good, and it is independent of their trade on the other goods. Thus, when an agent
belongs to a blocking coalition and the other does not, either they keep the trade of
all units of the good specified in the sale contract or they completely eliminate the
trade of this good. In the global case, the sale contract between a buyer and a seller
includes all trades on all goods and thus, when an agent belongs to a blocking coalition
and the other does not, either they keep all trades or they have to be eliminated all
together.

Jaume, Mass6 and Neme [4], when defining competitive equilibrium for this gen-
eralized assignment game, consider that given a price vector (a price for each of the
goods) agents demand and supply those units of the goods that maximize their total
payoff without taking into account the aggregate feasibility constraints. The supply
or demand of each agent only depends on the price vector and his individual fea-
sibility constraints. The fact that, at a given price vector, all supply and demand
plans are mutually compatible is an equilibrium question, rather than a restriction
on the individual maximization problems. On the other hand, the competitive equi-
librium notion studied by Sotomayor ([13], [14], and [15]) in related models assume
that individual demands and supplies have to be feasible for the market. Namely,
when obtaining their optimal demands and supplies it is assumed that agents can not
demand or supply more than the available amounts present in the market.

The most important results of this paper are the following. First, we show that
each one of the sets of payoffs corresponding to the three group stability notions
can be directly identified with the union of Cores of particular cooperative games
with transferable utility, where the blocking power of coalitions is inherited from
the corresponding nature of the sale contracts between buyers and sellers (unit-by-
unit, good-by-good, or global). Second, and using this identification, we show that
the three notions of group stability are supported by a Cartesian product structure
between a given set of matrices of prices and the set of optimal assignments; all
payoft vectors in any of the sets corresponding to the three group stability notions
are fully identified by a set of matrices of prices; and all payoff vectors in any of the
sets corresponding to the three group stability notions are completely identified with
the solutions of a system of bounded linear inequalities. Third, we show that each
of the two competitive equilibrium notions can be directly identified with the union
of Cores of certain cooperative games with transferable utility. This result allows
us to obtain for the two competitive equilibrium concepts the same conclusions that
we have already obtained for the three group stability notions. Hence, cooperative



as well as competitive solutions have all the same properties from a structural and
computational point of view. Furthermore, all studied solutions maintain a strictly
nested relationship.

In short, the paper contributes to the study of markets with indivisible goods. In
particular, it shows that the two competitive equilibrium notions are immune with
respect to the secession of subgroups of agents. It also identifies some structural
properties that hold for competitive equilibrium solutions as well as for different
notions of group stability.

The paper is organized as follows. In the next section we present the model
introduced in Jaume, Mass6 and Neme [4]. In Section 3 we define three notions of
group stability and study the equivalence of each of these notions with the Cores of
their corresponding cooperative games with transferable utility. We show that the
three group stability sets of payoffs have a Cartesian product structure and that they
can be identified as the solutions of a system of linear inequalities. In Section 4 we
perform a similar analysis for the two notions of competitive equilibria. In Section 5
we compare the three notions of group stability with the two notions of competitive
equilibria. Section 6 contains an Appendix with the proofs of three results omitted
in the main text.

2 Preliminaries

A generalized assignment game (a market) consists of three finite and disjoint sets:
the set B of B buyers, the set G of G goods, and the set S of S sellers. We denote
a generic buyer by ¢, a generic good by j, and a generic seller by k. Buyers have a
constant marginal valuation of each good. Let v;; > 0 be the monetary valuation that
buyer 7 assigns to each unit of good j; namely, v;; is the maximum price that buyer

i is willing to pay for each unit of good j. Denote by V = (v;;) ( the matrix

1,J7)EBX
of valuations. We assume that buyer i € B can buy at most d; ej )%Jr\g{()} units in
total, where Z, is the set of non-negative integers. The strictly positive integer d;
should be interpreted as a capacity constraint due to limits on i’s ability for storage,
transport, etc. Denote by d = (d;);ep the vector of mazrimal demands. Each seller
k € S has q;;, € Z, indivisible units of each good j € G. Denote by Q = (¢;i)(jk)coxs
the matrix of capacities. We assume that there is a strictly amount of each good;
namely,

for each j € G there exists k € S such that g;; > 0. (1)

Let 7, > 0 be the monetary valuation that seller k assigns to each unit of good j;
that is, 7, is the reservation (or minimum) price that seller & is willing to accept for
each unit of good j. Denote by R = () (k) EGXS the matrix of reservation prices.
A market M is a T-tuple (B, G, S,V,d, R, Q)) satisfying condition (1). Shapley and
Shubik [9]’s (one-to-one) assignment game is a special case of a market where each
buyer can buy at most one unit, there is only one unit of each good, and each seller

4



only owns one unit of one of the goods; i.e., d; = 1 for all i € B, G = S, and for all
(j,k)€G xS, qjr=1if j=Fkand ¢j; =01if j # k.

Let M = (B,G,S,V,d, R,Q) be amarket. An assignment for market M is a three-
dimensional integer matrix (i.e., a 3"%-order tensor) A = (Aijk) G, k)eBxgxs € ZEXGXS
describing a collection of deliveries of units of the goods from sellers to buyers. Each
A;ji should be interpreted as “buyer 7 receives A;j; units of good j from seller k.”
We often omit the sets to which the subscripts belong to and write, for instance,
Zijk Ajji and Y, A;ji instead of Z(z;gyk)esxgxs Aijr and ), g Ajji, respectively.

The assignment A is feasible for market M if each buyer ¢ buys at most d; units
and each seller k sells at most g;;, units of each good j. We are only interested in
feasible assignments; namely in the set

{A € 7ZB*o"5 | > i Aige < di foralli € Band 3, Ay < gy for all (j, k) € G x S}

For further reference, we denote this set of feasible assignments for market M by
FO(M) (or simply by F?).
The total gain from trade of market M at assignment A is

TY(A) = 350 (vig = Tr) - A
Definition 1 A feasible assignment A is optimal for market M if, for any feasible
assignment A, TM(A) > TM (A').

Example 1 below contains an instance of a market with a unique optimal assign-
ment.

Example1 Let (B,G,S,V,d, R, Q) be amarket where B = {b,,b2},G ={9,, 92,93}
S={s}, V= ( g g ;l ) , d = (10,10), @ = (10,5,1) and R = (5,2,1). For any
A e FO,

TM(A) =(6-5) Ay +(4—2) - Ay + (4 — 1) - Ay + (T —5) - Ay

+(3—2) - Agyy + (5 —1) - Ajgy
= Al + 2 Ay +3- Al + 2 Ay + Ay +4- Adgy.

150
9 0 1
and TM (A) =1+42-5+2-9+4=33. 0

It is easy to check that A = ( ) is the unique optimal assignment for M

Let F(M) (or simply F) be the set of all optimal assignments for market M. The
set F is always non-empty.* Denote by T™ the total gain from trade of market M at
any optimal assignment.

4See Milgrom [7] for a proof of this statement, based on a fix point argument, in a more general
model. Jaume, Mass6 and Neme [4] contains a proof of the statement, using only linear programming
arguments, in the same model as the one studied here.



Fix a market M = (B,G,S,V,d, R,Q). Denote by G~ the set of goods that are
exchanged at some optimal assignment. Namely,

G~ = {j € G | there exists A € F such that A;;, > 0 for some (i,k) € B x S}.
Moreover, for each buyer i € B and each seller k € S, define
G;. = {j € G| there exists A € F such that A;;; > 0}

as the set of goods that i buys to k at some optimal assignment.

3 Cooperative Solutions: Core and Group Stabil-
ity

Mass6 and Neme [6] define, for any market M, two cooperative solutions: the Core
and a group stable set (they call it set-wise stable). As described in the Introduction
the two concepts are based on the idea that a coalition will object to a proposed payoff
vector if all agents in the coalition can improve upon their payoffs, but differ in that,
when objecting, the Core requires that all members of the blocking coalition break
their exchanges with agents outside the coalition while group stability (which we
shall call it here type 1—group stability) allows that the exchanges of an agent in the
blocking coalition with agents outside the coalition are maintained or reduced (since
sale contracts are unit-by-unit). Here we propose two alternative notions of group
stability. Type 2—group stability makes sense when sale contracts are performed
good-by-good and therefore an agent in the blocking coalition can maintain with an
agent outside the coalition the exchange of all units of the good or else delete them all.
Type 3—group stability makes sense when between a buyer and a seller there exists
only a sale contract and therefore an agent in the blocking coalition can maintain
with an agent outside the coalition all exchanges or delete them all.

Let M = (B,G,S,V,d, R,Q) be a market and C' C BU S be a coalition. Denote
the sets of buyers and sellers in C by B¢ = C N B and 8¢ = C' N S, respectively.

Definition 2 Let M = (B,G,S,V,d,R,Q) be a market and C C BUS be a
coalition. A feasible assignment A € F° is 1—group compatible with C' if there exists
an optimal assignment A € F such that

(i) for all i € BY, Izl\ij]g > 0 implies that either k € S¢ or else Eijk < A;jx, and
(ii) for all k € 8¢, A\ijk > 0 implies that either i € B¢ or else Zijk < Ayji.

"Massé and Neme [6] add a third condition requiring that for all i ¢ B¢ and k ¢ S¢, A\ijk =0
for all j € G. Since the exchanges between two agents outside the blocking coalition are irrelevant
for describing the payoffs that agents in the blocking coalition can obtain, here we will dispense with
this condition, since often will be useful that the assignment A be an optimal one.



We want to emphasize that the above definition considers as compatible any re-
allocation of goods between the agents within the coalition and only decreases (with
respect of some optimal assignment) the trade, of any good, between an agent in the
coalition with another agent outside. The next two definitions of group compatibil-
ity limits the reallocations of goods between members of the blocking coalition and
outsiders depending on whether sale contracts are good-by-good or global.

Definition 3 Let M = (B,G,S,V,d,R,Q) be a market and C C BUS be a
coalition. A feasible assignment A € F° is 2—group compatible with C if there exists
an optimal assignmentA € F such that

(i) for all s € B, A\Z’jk > 0 implies that either k € S¢ or else g@jk = Ajjx, and
(ii) for all k € 8¢, @jk > 0 implies that either i € B¢ or else Eijk = Aiji.
Definition 4 Let M = (B,G,S,V,d,R,Q) be a market and C C BUS be a

coalition. A feasible assignment A € F° is 3—group compatible with C if there exists
an optimal assignment A € F such that

i) for all i € B, A\z & > 0 implies that either k£ € S¢ or else EZ o = A for all
j j j
j € G, and
(ii) for all k € S€, A\Z’jk > 0 implies that either i € B or else A\ij’k = A, for all
jeq.
Let M = (B,G,S,V,d, R,Q) be amarket, C C BUS a coalition and t € {1,2,3}.

Denote by F*(C') the set of all feasible assignments that are t—group compatible with
C.

Example 1 (continued) To see the differences among the three types of group
compatibility, consider the coalition C' = {b,, s1} in market M of Example 1. Then,

fl(C) = {A\EFO\OSA\ml§9,2221:Oand0§;1\231§1}.
fQ(C) = {//4\6 f‘o ‘ A\Q]_]_ € {079}, 2221 =0 and 2{231 € {0, 1}}
FHO) = {A\ e F| (2211,121\22172231) =(9,0,1) or (E211,/A1221,E231) = (0,0,0)}.

Thus, F3(C) c F*(C) c FYC) and
55 0 LONF 15 1 , ,
(5 0 1)6.7: NF(C), <9 0 0)6.7:(0)\.7:(0),and

(13 erio) "

Let M = (B,G,S,V,d, R, Q) be amarket. A 3"%-order tensor I' = (T;jx) (i.jk)eBxgxs
€ REX9*S g a distribution matriz for market M if for all (4,5, k) € B x G x S such
that v;; > 7, and j € G, v;; > Tyjp > rj; holds. Let T' be a distribution matrix
for market M and assume that v;; > rj;, for some (i, j, k) € Bx G x S and j € G,
Then, I';;; describes a possible way of how buyer ¢ and seller k& can split the gain
v;; — 1 > 0 they could obtain by exchanging one unit of good j: buyer 7 receives



v;; — I'iji and seller k receives I';j, — 7. If j ¢ G the value I';j; will be irrelevant
since ¢ and k will not exchange any unit of good j in any optimal assignment. Observe
that distribution matrices are not necessarily anonymous because a buyer may obtain
different gains per unit of good j if he buys the same good from different sellers, and
viceversa. Denote by D(M) (or simply by D) the set of all distribution matrices for
market M.

Definition 5 A vector (u;, wi)(ir)eBxs € RE*5 is a feasible payoff for market M if

ieB keS

Denote by X (M) (or simply by X') the set of all feasible payoffs for market M.
Let M = (B,G,S,V,d, R,Q) be a market and C' C BU S a coalition. For every
I' € D and A € FY, define the gain for C at A according to T' by the expression®

oM (C,AT) = > (vij — 7j) - Aije + > (vij — Tiji) - Aiji
(i,5,k) €BCxGxSC A(i,j,k)echgx(Sc)c
+ > (Tije — 74x) * Aij-

(i,3,k)€(BC) xGXxSC
A 2)
Observe that ¢* (C, A,T') is independent of t € {1,2,3}.
We are now ready to define the blocking notions according to the assignments
that the coalition can use.

Definition 6 Let M be a market and ¢ € {1,2,3}. A payoff (u,w) € X (M) is not
t—group blocked if there exists a distribution matrix I' = (k) (ijk)eBxgxs € D(M)
such that for all coalition C' C BUS and A € F'(C),

S w4+ 3w > oM(C, AT,

i€BC keS¢

It is useful to point out that the definition depends on ¢ € {1, 2, 3} since the gain
for C' depends on the set F'(C) of feasible assignments (that is, t—group compatible)
with C. Finally, we define the three notions of group stability.

Definition 7 Let M be a market and ¢ € {1,2,3}. A payoff (u,w) € X (M) is
t—group stable for M if it is not t—group blocked.”

Denote by GS*(M) (or simply GS*) the set of payoffs that are t—group stable for
M. Since F3(C)C F*(C)C F'(C) for all C C BUS, it follows that
GS' c g§8* c gS*.

6Given a set Y we denote its complement by Y¢. The reader should not be confused when Y is
B¢ or S, whose complements are denoted by (BC)C and (SC)C, respectively.

"The notion of 1—group stability corresponds to set-wise stability defined in Massé and Neme

[6].



Moreover, there are markets for which these inclusions are strict and hence,®

GS' G GS* G GS*. (3)

By the above remark and the fact that GS* # ) (see Mass6é and Neme [6]) all
t—group stable sets are non-empty. For further reference, we present this result as
Proposition 1 below.

Proposition 1  For any market M and t € {1,2,3}, GS'(M) # 0.

Massé and Neme [6] define the Core of market M as the Core of the cooperative
game with transferable utility induced by M. They show first that the 1—group
stable set is a strict subset of the Core and strictly contains the set of competitive
equilibrium payoffs. Second, the 1—group stable set converges in the second replica
to the set of competitive equilibrium payoffs while the Core does not converge to it
in a finite number of replica. Hence, one may infer from the two results that the
two cooperative notions are essentially different. We will see here that the difference
does not refer so much to the solution concept but rather on how the game for which
the Core is obtained is defined. Massé and Neme [6] define the cooperative game by
assuming that the assignment A is feasible for a coalition C' C BU S if and only if
members of C' only exchange goods among themselves.

Definition 8 Let M = (B,Q,AS,V,d, R,Q) be a market and C' C BUS be a
coalition. A feasible assignment A € F° is Core-compatible with C' if
(i) for all s € B, A\Z’jk > 0 implies k € S¢, and
(i) for all k € 8¢, A\ijk > 0 implies i € BC.
Given C' C BUS, the set of all Core-compatible assignments with C' will be denoted

by F¢°(C). Using this notion, we define the cooperative game with transferable utility
(BUS,v) where, for every C C BUS,?

v(C) = max ¢M(C,AT). (4)

AeFCo(C)

Then, the Core of market M, denoted by C(M), is the Core of the game (BU S, v);
namely,

C(M) ={(u,w) € X(M) | v(C) < Z w+ Y, wy forall C C BUS}.

Now, if we accept the notions of group stability as reasonable solutions, we can
define new cooperative games with transferable utility where compatible assignments
with a coalition C' admit that its members may have certain exchanges with agents

8In the Appendix in Section 6 we show that this property holds for the market M of Example 1.

90bserve that if A € FP°(C), then ¢ (C,A,T) is independent of I since ¢™(C,A,T) =

(vij — 7jk) - Agji. For those cases we could simply write ¢™ (C, A).
(i,4,k) €BCxGxSC



outside C. For this purpose it is necessary to consider a distribution matrix I' € D
indicating how the gains from trade are distributed with members outside coalition
C. We now present these notions formally.

Definition 9 Let M = (B,G,S,V,d, R, Q) be a market, I' € D and t € {1,2,3}.
The cooperative game with transferable utility associated to t and T, denoted by (B U
S, v, is defined as follows: for every C C BU S,
v(C) = max ¢"(C, A, ).
AeF(C)

If T € D is given and we allow C' to choose among the set of assignments in F*(C'),
the game (BU S, ') can be interpreted in a similar way as we interpreted the game
defined in (4), where each coalition maximizes the total payoff since ¢™(C, A, ') is
the total gain reccived by members of C' under A. We will denote by CU'(M) (or
simply by C'') the Core of the game (BU S, v'™).

Remark 1 Note that for all I' € D and ¢ € {1,2,3},
™ =v(BUS) =v"(BUS) =v* (BUS) = (BUS).

Hence, (u,w) is a feasible payoff (i.e., (u,w) € X') if and only if ) . _pui+> .o Wi =
W(BUS).

Using the games (BU S, v'") associated to M we can now see that the notions of
Core and group stability are extremely related. Indeed, the following result holds.

Theorem 1 Let M be a market. Then, for all t € {1,2,3},

gs' (M= |J c"().

reD(M)

Proof Fix M and t. We first show that for all T € D, C*' CcGS". Let (u,w) € C*.
By Remark 1, (u,w) is a feasible payoff. Moregver, forall C C BUS, ) . .pcui +
> kesc Wi > v'T(C). Hence, for all C and all A € F'(C), Y ,cpc Ui + Y pege Wi =
#™M(C, A,T). Thus, (u,w) € GS'. Namely, |J C* cGs'.

reD(M)
Take now a payoff (u,w) € GS*. Since (u,w) is a feasible payoff, by Remark 1,
Siepli + Dopeswe = v (BUS) for all T € D. Moreover, and since (u,w) is not
GS'—blocked, there exists I' € D such that for all C € BUS and all A € F!(C),

S oui+ X wy > M (C,AT).
ieBC keS¢
Hence, there exists I' € D such that Y, zc wi+ > pcgc wi, > v™(C) for all C C BUS;

namely, (u,w) € C''. Thus, (u,w) € |J C%. [
reD(M)

In the Appendix in Section 6 we show, using the market of Example 1, that the
sets C''" may be empty for some I.

10



3.1 Cartesian Product Structure and Computation of the
Group Stable Solutions

In this section we present, using Theorem 1, results on the structure of the t—group
stable set of payoffs for t = 1, 2,3 and how to compute them.

Fix ' € D and A € F°. Define the utility of buyer i € B at the pair (I', A) as the
total net gain obtained by ¢ from his exchanges specified by A and the distribution
of gains given by I'. Denote such utility by u;(I", A); namely,

ui(I', A) = Xk:(%‘j — Liji) - Aiji- (5)
j
Similarly, define the wutility of seller k € S at the pair (I'; A) as the total net gain
obtained by k from his exchanges specified by A and the distribution of gains given
by I'. Denote such utility by wg(I", A); namely,
wi(I A) = > (Lije — 7je) - Aiji- (6)
ij
Given (I', A), we will denote by u(I'; A) = (u(T', A));ep and w(I'; A) = (wi(T', A))kes
the vectors of utilities of buyers and sellers at (', A), respectively.

Proposition 2 Let M be a market, T' a distribution matriz and t € {1,2,3}. Then,
CT # 0 if and only if CT = {(w(T', A),w(l",A)) | A € F}.

Proof It is immediate to check that C'" = {(u(T, A),w(T, A)) | A € F} implies
C' # (). To show that the other implication holds, assume CT' # (). We first
check that (u(T, A), w(T, A)) € C for all A € F. Let A € F be arbitrary and let
(u,w) € C™'. Consider any coalition C' = {i} with i € B. Then, A € F*({i}). Hence,
since (u,w) € C*" and the definition of v’

w2 oM(CAT) = 3 (v —Tijr) - Aije. (7)
(j.H)EGXS

Similarly, and considering any coalition C' = {k} with k € S,

wi > oM(C,LAT) = > (Tije —7jn) - Aij- (8)
(1,5)EBXG
Moreover, by Remark 1, Y u; + > wp =0T (BUS) = TY. But
ieB kes
™ =% > (v —Tiye)-Agr+ X X Cije— i) - Aije
1€B (j,k)eGxS kES (i,j)eBXG

holds. Hence, (7) and (8) imply

u; = > (vij — Lyjg) - Aiji, for all i € B and
(j,k)eGxS

W = >0 (Dijg —mjk) - Aiji for all k € S.
(i,5)EBXG

11



Thus, (u,w) = (u(T, A),w(T, A)). Therefore, (u(T', A),w(T, A)) € CT. Now it re-
mains to be proven that if (u,w) € C™', then there exists A € F such that (u,w) =
(w(T, A),w(T, A)), but observing that F = F*(BUS), it is proven similarly as we did
previously. [ |

Denote by D(M) = {T' : CT'(M) # 0} (or simply by D) the set of distribu-
tion matrices whose associated game v has a non-empty Core. By Theorem 1 and
Proposition 2, the set GS* has the following Cartesian product structure.

Corollary 1 Let M be a market and t € {1,2,3}. Then,
GS' = {(u(T", A),w(T, A)) | (T, A) € D' x F}.

We will refer to the set D! as the set of t— distributions by groups. The above Corol-
lary establishes that GS* has a similar structure to the set of competitive equilibrium
payoffs.!’

Lemmal Lett € {1,2,3} and T € D' be such that C** # (. Then, (u(T', A),w(T, A))
= (u(T, A"),w(I", A")) for all A, A" € F.

Proof Observe that the proof of Proposition 2 does not depend on the particular
optimal assignment A € F. Hence, fixed I, if C* # () then the vector of utilities
(u(l'; A),w(T, A)) at the pair (I', A) is independent of the chosen optimal assignment
AeF. [

By Lemma 1, for I' € D' and A € F we can write (u(I'),w(T")) instead of
(u(T; A),w(l'; A)). Hence, the following result follows immediately from Theorem
1 and Lemma 1.

Corollary 2 Let M be a market and t € {1,2,3}. Then,
GS' = {(u(T),w(l)) | T € D'}.

The above corollary establishes that each payoff vector in GS* comes from a dis-
tribution matrix I' € D'. Again, Jaume, Massé and Neme [4] show that a similar
result holds for the set of competitive equilibrium payoffs when the gains from trade
are determined by an equilibrium price vector (a price for each good).

Proposition 3 below gives necessary and sufficient conditions under which a dis-
tribution matrix I' is a t—distribution by groups. But to state it, we present, given
an optimal assignment A € F, the following system of inequalities on I:

oM(C, A, T) < ¢M(C,A,T) for all C € BUS and all A € F'(C). (9)

10 Jaume, Mass6 and Neme [4] show that the set of competitve equilibrium payoffs is the Cartesian
product of the set of competitive equilibrium prices and the set of optimal assignments F.

12



Proposition 3 Let M be a market and t € {1,2,3}. Then, the following statements
are equivalent:

(i) T is a t—distribution by groups.

(ii)
"(BUS) =) v ({i})+ Y v ({k}) and (10)
i€B keS
V() < Y WT{iH) + Y o ({k}) for all C C BUS. (11)
ieBC keS¢

(iii) There exists A € F such that v'T (C) = ¢™(C, A,T") for all C C BUC.
(iv) For all A€ F, v (C) = ¢™(C, A,T") for all C C BUC.
(v) T solves the system in (9).
Proof The equivalence between (iii) and (v) is immediate. That (ii) implies (i) is
immediate since, by (10) and (11), ("7 ({i}), v ({k})@mesus € C'T. By the definition
of v'', we have that (iii) implies (ii). That (iv) implies (iii) is also immediate. It
remains to be proven that (i) implies (iv).

Assume CT' # () and let A € F. By Proposition 2, (u(T, A),w(T’,A)) € CT.
Hence,

T'({i}) for all i € B and
Tk} forall k€ S.

ARV

Thus, by the definition of v,

u; (T, A) v ({i}) for all i € B and
wp(I, A) = T ({k}) forall k € S.

Hence,

v ({i}) = ¢M({i}, A,T) for all i € B and
T{k}) M({kY, A,T) for all k € S.

Now, since (u(T', A), w(T, A)) € C'T holds, by the definition of v*'(C) it follows that

VT(BUS) = w(l,A)+ Y wi(T, A) and, for all C C BUS,

i€B keS
PM(C,AT) <o) < Y wi(T A) + > wi(T, A) = ¢™(C,AT).
i€eBC keS¢
Thus, v''(C) = ¢™(C, A,T) for all C ¢ BUS. u
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4 Competitive Solutions

4.1 Two Competitive Equilibrium Notions

In this section we first present two already known competitive solutions for generalized
assignment games. Using a similar approach to the one already used with ¢t—group
stability we will see how competitive equilibria are related with the notions of Core,
provided that the cooperative games with transferable utility are defined properly.
This will allow us to draw conclusions with regard to the structure of competitive
solutions and how to compute them.

The first competitive solution was presented by Jaume, Mass6 and Neme [4]. We
will see how we can obtain some of the their results using the approach used in
the previous section. This solution assumes that buyers and sellers exchange goods
through competitive markets. Namely, there is a unique market for each of the goods
(with its corresponding price). Hence, a price vector is an n—dimensional vector of
non-negative real numbers. Buyers and sellers are price-takers in the following sense.
Given a price vector p = (p;)jec € R} each seller offers units of the goods he owns
(up to his capacity) to maximize his net gains and each buyer demands units of the
goods (up to his maximal capacity) to maximize his total net valuation. The unique
information that each agent has about the markets, besides the price vector, is his
per unit valuations of the goods and his capacity of maximal demand (if the agent
is a buyer) and his reservation prices and number units owned of each of the goods.
Agents do not know the aggregate capacities.

In the second notion we will assume that the aggregate capacities of the market
are known by the agents. For instance, because the market is small and the transac-
tions take place all at the same time in a small place. Hence, given a price vector p,
agents will maximize their utility taking into account the market aggregate capaci-
ties. Namely, a buyer i will never demand of good j a quantity larger than >, g,
eventhough this amount is smaller than d; and the net valuation (v;; —p;) of good j is
strictly larger than the net valuations of all the other goods. This notion can be seen
as an extension of the competitive equilibrium notions introduced and studied in So-
tomayor [13], in an assignment model with indivisible goods and by Sotomayor ([14]
and [15]), in a model with infinitely divisible goods, but in both cases and in contrast
with our model, it is assumed that sellers only own units of the same good. In these
three papers, given a price vector p, agents’ demands and supplies are obtained by
solving their maximizing problems over the set of feasible assignments; that is, it is
assumed that agents know the aggregate capacities.

It is also possible to consider the case where only buyers know the aggregate
capacities and only they adjust their demands to such constraints, and viceversa.
Our proofs could be adapted easily to these two settings to obtain similar conclusions
for them.

To present the first approach, we transcribe some definitions in Jaume, Mass6 and
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Neme [4].
Supply of seller k: For each price vector p = (p;),eg € ]Rf, seller k offers of each
good j any feasible amount that maximizes his gain; namely,

{qjx} if p;j >y
Sip(pj) = {0,1,..,qx} ifpj =1k (12)
{0} lf pj < rjk-

To define the demand of buyer ¢+ € B, we will use the following notation. Let p € Rf
and let

Vip)={icG|vj—p = f}}gg{vz’j' —py} >0} (13)

be the set of goods that give to buyer i the maximal (and strictly positive) net
valuation at p. Obviously, for some p, the set V; (p) may be empty. Let

Vi) ={i € Gl vy —p; = max{vy —py} 20} (14)

be the set of goods that give to buyer i the maximal (and strictly positive) net
valuation at p. Obviously, for some p, the set V? (p) may be empty. It is obvious that
for all p € RY and all i € B,

V7 (p) C Vi(p). (15)

Demand of buyer i: For each price vector p = (p;);eg € Rf, buyer ¢ demands any
feasible amount of goods that maximize his net valuation at p; namely,

Di(p) = {a = (aji)(jreoxs € 2% | (D.a) ay >0 for all (j,k) € G x S,
(D.b) ij ajr < d;,
(D.c) V7 (p) # 0= >, ajx = d; and
(D.d) S, a5 > 0= 7€ Vi(p)}
Given A € F° and i € B, denote by A(i) = (A(i);x)(jregxs the element in Z§*9
such that, for all (j,k) € G x S, A(i) 1 = Ajji-
Definition 10 A -1—competitive equilibrium'' of market M is a pair (p, A) € RS x
FY such that
(E.D) for all i € B, A(i) € D; (p), and
(ES)forall je Gandall k €S, ) . Ajjx € Sji (p)) -

Next, we present the second competitive solution related to situations where
agents, given a price vector, adjust their demands and supplies to the aggregate
restrictions of the market. Given a price vector p = (pj)jeg € ]Rf sellers will offer
units of the goods (below their capacities) to maximize the net gains at p, but know-
ing that buyers will be able buy at most D = }_._, d; units in total, and buyers will

1 Jaume, Mass6é and Neme [4] refer to this notion as competitive equilibrium; here we will refer
to it as -1—competitive equilibrium to have available in this way a notation that will help us to
compare it with other solutions.
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demand units of the goods (below their capacities) to maximize the net valuations
at p, but knowing that they will be able to buy at most Q; = >, s ¢; units of each
good j. To define the supply of seller £ € S, we will need the following notation. Let
pE Rf be a price vector and let

Ve =i €9 1p; —ri = maxpeg{py i} > 0}
. 1
Vi (p) =1{i € G\Vi 0) | pj — 1% = maxcq g1 iy — i} > 0}

Vie (p) = {5 € 9\ Un2y Vi (0) | pj — 1k = max gy o1 gmo (s — 7k} > 0}

Vi>(p) — {j c g\ UJ 1 Vm>( ) |pj — Tjp = Max; ,eg\UJ 1vm> {pj/ — rj/k} > 0}

be the sets of goods that give to seller k an strictly positive net gain at p, ordered in
such a way that goods in Vi (p) give a larger net gain than goods in V7> (p) if and
only if z < 2’. Obviously, for some p, the set Vi~ (p) may be empty from a given 2
on.

Since seller £ knows the market constraints, & knows that the maximal possible
demand is D = ). ,d;. Hence, k will adjust his supply to this demand. Now define

sik(p) = min{zjev,?(p) jk, D}
sar(p) = min{zg’ev§>(p) Gk, D — s1x(p) }

Szk(p) = min{ngvz>( ) q]k7 D Zm 1 Smk(p>}

3]k<p) = min{zj'ev]?( ) dik> D — Zm 1 Smk(p)}

We may have s,x(p) = 0 from some z on.
Now, let

Vi) ={i €GIp;—rjr =0} (16)
be the set of goods that give to seller k£ a non-negative net gain at p. Obviously, for
some p, the set V,f(p) may be empty. It is obvious that for all p € Rﬁ and all k € S,

Vi (p) C Vi(p) forall z=1,...,.J. (17)

Supply-0 of seller k: For each price vector p = (p;);jeg € RS, seller k supplies any
feasible amount for the market of the goods that maximize his net gain at p; namely
Si(p) = {8 = (B))jeg € 29| (S.a0) B; = 0 for all j € G,
(S.b0) B; < g for all j € G,
(SCO) V?(p) 7é ) = ZjGVi>(p) 63‘ = Szk(p)
forz=1,...,J and
(S.d0) B; > 0= j € Vi (p)}.

16



Therefore, SP(p) describes the set of sales that maximize the net gain of seller
k at p (taking into account the market constraints).'> Observe that the set of sales
described by each element in SY(p) gives, to seller k, the same net gain; namely, & is
indifferent among all sales in SP(p).

To define the demand of buyer ¢« € B, we will need the following notation. Let
pE Rf be a price vector and let

Vi7(p) ={j € G| vy — pj = maxjeg{viy —p;yr} > 0}
V?>(p) ={j€ Q\V?(P) | Vij — Pj = manfeg\vy(p){Uij’ _Pj'} > 0}

ViZ(p) ={j € G\ U2, VI (p) | vy — pj = manreg\an—:llvyL>(p){Uij' —py} >0}

ViZ(p) = {5 € G\ Uy VI (p) | vij — pj = max,cgy o1 gr> (g {vigr — pjr} > 0}

be the sets of goods that give to buyer ¢ an strictly positive net valuation at p, ordered

in such a way that goods in VI~ give a larger net valuation than goods in Vf,> if and

only if z < z’. Obviously, for some p, the set Vi~ (p) may be empty from some z on.
Now we define

d1;(p) = min{d;, ZjevP(p) @5}
dsi(p) = min{d; — dy;(p), ZjeV?>(p) Q;}

d; (p) = min{di - an_:ll dmi(p)= Zjevf?(p) Qj}

dJi(p) = min{di - Z;]n;ll dmz (p)a Zjev;’>(p) Q]}

Obviously, for some p, we may have d.;(p) = 0 from some z on. Also, for all p € RY
and all ¢ € B,
Vi (p) CVi(p) forall z=1,..,.J. (18)

Demand-0 of buyer i: For each price vector p = (p;);eg € Rf, buyer ¢ demands
any feasible amount for the market that maximizes his net valuation at p; namely,
DY(p) = {a = (k) jreoxs € Z9° | (D.al) ajp > 0 for all (j, k) € G x S,
(D.b0) ij o < d;,
(D.c0) V¥ (p) #£ 0 = Zjevf>(p) > ok Ak
=d,(p) for z =1, ..., J and
(D.d0) >, ajr > 0= j € Vi (p)}.

Thus, D?(p) describes the set of all purchases that maximize the net valuation of
buyer i at p, taking into account the aggregate constraints of the market.'® Observe

2When s.(p) = Zjevz>(p) gjx for all z =1,...,J, the supply—0 of seller k coincides with that
presented in Jaume, Massé and Neme [4].
3When dy;(p) = d; the demand-0 coincides with the definition in Jaume, Massé and Neme [4].
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that the set of purchases described by each element in D?(p) give to i the same net
valuation; namely, 7 is indifferent among all purchases in D?(p).

Definition 11 A 0—competitive equilibrium of market M is a pair (p, A) € RS x F°
such that

(E.DO) for all i € B, A(i) € DY (p), and
(ESO) for all k£ € S, (Z,L Aijk)jeg S Sl(s:) (p) .

In the remaining of this section, ¢ will be an index in {—1,0}. We say that the
vector p € ]Rf is a t— competitive equilibrium price (or simply a t—equilibrium price)
of market M if there exists A € F° such that (p, A) is a t—competitive equilibrium of
M (or simply a t—equilibrium). Denote by P* to the set of all t—equilibrium prices
of market M.

Fix a price vector p € RS and a feasible assignment A € F°. According to (5) and
(6), the utility of buyer i € B at (p, A) is

ui(p, A) = >_(vij = pj) - Aijr

ik
and the utility of seller k € S at (p, A) is
wi(p, A) = 32(pj — i) - Aij-
ij
Definition 12 Let M be a market and ¢t € {—1,0}. The set of t—competitive
equilibrium payoffs is given by

CE = {(u,w) € REXR® | (u,w) = (u(p, A), w(p, A)) for some t—equilibrium (p, A)}.

We now define a cooperative game with transferable utility that will allow us to
draw conclusions about P! and CE?, for t = —1, 0, similarly as we did for D! and GS?,
fort=1,2,3.

Definition 13  Let M be a market. A pair (AP A%) € ZE*O*5 x 7B8x6*5 ig
-1—compatible in M if

(i) for each i € B, ij Agk < d;, and

(i) for each k € S and j € G, 37, A7) < ;.

The set of pairs -1—compatible in M will be denoted by F 1. Moreover, and with
an abuse of notation, we will denote by F° = {(A,A) | (A, A) € F~'} the set of
0— compatible assignments in M.

14 Although, by the notation used in the previous section, we have that F* = {A | (4, 4) ¢ F~!}
the abuse of notation when writing F° = {(4, A) | (4, A) € F~'} does not produce any trouble and
helps to present the results.
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Definition 14 Let M be a market, t € {—1,0}, p € RS a price vector, C C BUS
a coalition and (AP, A%) € F'. Define the net gain for C' at (AP, A%) according to p
by
SOM(C’ (ABaAS)>p) = Z Z(Uij _pj) ’ AZB;]C + Z Z(pj - rjk) ' AZ!@
i€BC jk keS¢ ij
Note that if (A, A) € F° then o™ (C, (A, A),p) = ¢™(C, A, p), where ¢ is given
by (2) after setting, for all j € G, I';;, = p; for all (i,k) € B x S. For each price

vector p, we can define the following associated games to market M.

Definition 15 Let M be amarket, t = {—1,0} and p a price vector. The cooperative
game (BU S, v'"P) with transferable utility associated to t and p is defined as follows:

v (C) = { max(az as)erp™ (C, (A%, A%),p) i C G BUS
™ if C = BUS.

We denote by C**(M) (or simply by C) the Core of the game (BU S,v'?). We
now see that these Cores are intimately related with the corresponding notions of
competitive equilibria.

Theorem 2 Let M be a market and t = {—1,0}. Then,
p € P if and only if C' # 0.

To prove Theorem 2 we need the following two results.

Lemma 2 Let M be a market and t = {—1,0}. Then, (p, A) is a t—equilibrium if
and only if, for all (AP, A%) € F,

Zk(’l}ij — p]) : Aijk Z Zk(vij — p]) . Agk fOT’ all1e B (19)
J j
and
(o — i) - Aije = D (pj — 1) - Afjk forall k€ S. (20)
1) )
Proof See the Appendix in Section 6. |

Parallel to Proposition 2 , we now have Proposition 4.

Proposition 4 Let M be a market, t = {—1,0} and p € Rf a price vector. Then,
C™ £ () if and only if C = {(u(p, A),w(p, A)) | A€ F}.

Proof It is similar to the proof of Proposition 2 and therefore it is omitted. [ |

Proof of Theorem 2  Assume p € P! and let A be such that (p, A) is a t—equilibrium.
Then, by the definition of v"7 and Lemma 2, (u(p, A), w(p, A)) € C'. To see that the
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other implication holds, let p be such that C* # () and let A € F. By Proposition 4,
(u(p, A),w(p, A)) € C'. Hence, for all (A8, A%) € F,

Zk(l)ij — p]) . Aijk > Zk(vij — p]) . Agk for all € B and
J J
Yo(pj — k) - Ai, > Z(pj —Tjg) - Afjk for all k € S.

ij

1j
Thus, by Lemma 2, (p, A) is a t—equilibrium and hence, p € P*. [ |
It is easy to check that, for all p € Rﬁ,

vP(BUS) = oP(BUS) (22)

v P(C) > v%(C) for all C C BUS and (21)

hold. Hence, C™'» C C% for all p € Rﬁ. Thus, by Theorem 2, the following result
holds.

Corollary 3 Let M be a market. Then, ) # P~ & PO.

Proof Jaume, Massé and Neme [4] show that ) # P-'. The inclusion follows from
Theorem 2, (21) and (22). The strict inclusion follows from Example 2 below. [

Example 2 Let M = (B,G,S,V,d,R,Q) be a market where B = {1,2}, G =
(1,2}, § = {1}, V = ( ° é ) d=(7,5)Q = (8,4) and R = (5,2). The unique

3 4

optimal assignment is A = ( 5 0

). Consider the price vector p = (5,2). Then,

VP ({by,byys1}) = T(A) =1-3+2-4+2-5=21, v®({by,s,}) =1-3+2-4=11,
vP({bg,51}) = 2-5 =10, vP({s1}) = 0, vP({bs}) =1-3+2-4 =11, v2({bhs}) =
2.5 = 10. Thus, (u(p, A),w(p,A)) = (11,10,0) € C® and hence, (5,2) € P°. But
(5,2) ¢ P~1, since at p = (5,2) buyer b; would demand 7 units of good 2. O

The next proposition follows immediately from Lemma 2 and the fact that if
A e F° then (A, A) € F' for all t € {—1,0}.
Proposition 5 Let M be a market and t € {—1,0}. Then, (p, A) is a t—equilibrium
if and only if p € Pt and A € F.15

A result, similar to Theorem 1 for group stable sets, hold for the sets of competitive
equilibrium payoffs.

15 Jaume, Masso y Neme [4] prove the result in another way when ¢t = —1.
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Theorem 3 Let M be a market. Then, for t € {—1,0},'

ce'= | cr.

G
pERY

Proof That CE" C |J C™ holds follows from Theorem 2 and Propositions 4 and

pERf
5. To see that the other inclusion holds, let (u,w) € |J C™. By Proposition 4, there
pERﬁ
exists (p, A) € RY x F such that (u,w) = (u(p, 4),w(p, A)) € C. Hence, by Lemma
2 and Theorem 2, (u,w) € CE". |

Corollary 4 Let M be a market. Then, () # CE~ ¢ CE°.

Proof Jaume, Massé and Neme [4] show that ) # CE~'. The inclusion follows
from Theorem 3, (21) and (22). Example 2 below shows that the inclusion may be
strict. u

Example 2 (continued) We already saw that p = (5,2) € P°\P~!. Hence,
(11,10,0) € C° and (11, 10,0) € CE°. Moreover, we have that (u(p*, A), w(p*, A)) =
(11,10, 0) if and only if p* = (5,2). But since (5,2) ¢ P~', (11,10,0) ¢ CE~*. Namely,
cetgcel

4.2 Cartesian Product Structure and Computation of Com-
petitive Equilibria

We have already seen that for ¢ € {—1,0} the set CE" is a Cartesian product in the

following sense:

CE = {(u,w) € R®*S | for some (p, A) € P' x F, (u,w) = (u(p, A), w(p, A))}.

Now, parallel to Lemma 1, the following result holds.

Lemma 3 Let M be a market, t € {—1,0} and p € RS a price vector. If C? # ),
then (u(p, A),w(p, A)) = (u(p, A"),w(p, A")) for all pairs A, A’ € F.

Proof The proof proceeds similarly to the proof of Proposition 2, using the fact
that if A € F, then (A, A) € F' for t € {—1,0}. |

Thus, if C®? # () and A € F we will write (u(p, A), w(p, A)) simply by (u(p), w(p)),

without any reference to A. We present this fact in the following Corollary.

16For the case t = —1, if we extend Definition 14 to all I' € D, we can show that

cel=|Jcr

reo

holds. Indeed, if C™' # () then I' is essentially a price vector; namely, for every pair
(i,j, k), (i/,j, k/) € B x G x S such that j € gfk N Qf,k,, Fijk = Fi’jk’-
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Corollary 5 Let M be a market and t € {—1,0}. Then, CE' = {(u(p),w(p)) | p €
Pt}
Parallel to Proposition 2, we present several necessary and sufficient conditions for

C' # () (one of them can be used to check whether or not p belongs to P*). Observe
that the condition

VP(C) < D o)+ Y vP({k}) forall C c BUS
ieBC keS¢
is trivially satisfied for ¢t € {—1,0}.
Fix A € F and consider the system on p of lineal inequalities given by
oM (O, (AB, A%),p) < pM(C, (A, A),p) forall C C BUC with #C =1 (23)
and for all (AP, A4) € F*.

Proposition 6 Let M be a market, t € {—1,0} and p € RS a price vector. Then,
the following statements are equivalent.
(i) p is a t—equilibrium price.
(ii) C™ £ 0.
(i)
VPBUS) =) oP({i}) + D v ({k}). (24)

i€eB keS

(iv) There exists A € F such that v'P(C) = o™ (C, (A, A), p), for all C C BUS with
#C = 1.

(v) For all A e F,v?(C) = ™ (C, (A, A),p) for all C C BUS with #C = 1.

(vi) p solves system (23).

Proof The equivalence between (i) and (ii) follows from Theorem 2. The equiva-
lence between (iv) and (vi) is immediate. That (iii) implies (ii) follows from the fact
that (v?({i}),v?({k})@repus € C''. That (iv) implies (iii) follows easily from the
definition v". That (v) implies (iv) is also immediate. Hence, it only remains to be
proved that (ii) implies (v).
Assume C'P # (). By Proposition 2, if A € F then (u(p, A),w(p, A)) € C*. Hence,
u(p) > v™®({i}) for all i € B and
wi(p) > vP({k}) for all k € S.

By the definition of v,
oM ({i}, (A, A),p) = wi(p, A) = v"({i}) for all i € B and
M ({k}, (A, A),p) = wip, A) = v"P({k}) forall k € S.
[ |

The above proposition gives criteria and procedures to compute price vectors in
Pt and therefore payoff vectors in CE".
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5 Comparison and Relationships among Solutions

Our notation will facilitate us to compare the solutions and to show how the group
stability notions, the notions of competitive equilibria and the Core of a market are
related. We first observe that for all C C BU S,

FEC)x FE(C) C FHO)x F*(C) c FPAC)x FA(C) c FH(O)x FH(C) c FP c F

Moreover, if (A, A) € F*(C) x F(C) then o™ (C, (A, A),p) = ¢ (C, A, p). Hence, for
all pand all C C BU S,

v(C) < vP(C) <v*P(C) <u™(C) < vP(C) < v (0)

and
v(BUS) = v?’p(BUS) = "Uzp(BUS) = Ulp(BUS) = UOP(BUS) = Uflp(BUS).

Thus, for all p,
COCPOC*DOCPDC®DC, (25)

and therefore,
if C'? % 0, then C' = C'P for t > t'. (26)
It is easy to describe markets for which there exists p such that C'? # () and C% = 0.

Now, we state a result showing that the set of payoffs associated to all six solutions
are non-empty and have a strictly nested structure.

Theorem 4 Let M be a market. Then,
DACET G CE" LGS ' ¢ GS* ¢ GS* ¢ C.

Proof By Corollary 4, (3), Theorems 1 and 3, and (25) it only remains to be proven
that the inclusion of CE° in GS? is strict. But Example 2 below will show that. W

Example 2 (continued) Consider p = (5,4). Then, v'P({by, s1}) = 11, v ({bs, 51})
18, v'?({s1}) = 8, v'P({h1}) = 3, v'P({by}) = 10. Hence, (u(p, A),w(p, A)) =
(3,10,8) € C'. Thus, (3, 10,8) € GS'. But p ¢ P°, since b; would demand 8 units of
good 1. Moreover, (u(p*, A),w(p*, A)) = (3,10, 8) if and only if p* = (5,4). That is,
(3,10,8) ¢ CE°. O

Massé and Neme [6] show that C€™' & GS' using an alternative proof. Moreover,
from the inclusion relationships established in Theorem 4, and by Theorems 1 and 3,
we observe that all solutions have a similar structure because to compute the payoff
vectors in the solutions it is sufficient to identify the appropriated T' (or p). Namely,

GS' ={(u(),w(l)) | € D'} fort =1,2,3

and

CE = {(u(p),w(p)) | p € P'} for t = —1,0.
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By Propositions 3 and 6, the elements in D! and P! are solutions of a system of
non-strict lineal inequalities (the functions #M and M are lineal and continuous in
I" and p, respectively). Hence, a procedure to compute payoff vectors in GS' and CE*
is by solving the respective systems. In addition, the sets of solutions of such systems
are convex and closed. Thus, D! and P! are convex and closed sets. But since the
functions (u(T),w(T)) are lineal and continuos in T, it follows that GS' and CE" are
convex and closed sets. Moreover, GS' and CE' are compact sets since GS* C C (M)
and CE' C C(M). Thus, the inclusions given in Theorem 4 constitute a chain of
nested convex sets.

6 Appendix

1 2 3 s
6.1 GS G GS° 5 GS° in Example 1
We want to show that GS' & GSs? - GS? holds for the market M of Example 1.

a) First, we will see that (u,w) = (11,16,6) € GS*\GS?. Let I' = ( 157 ; le )
3

and C' C BUS. We distinguish among five different cases.
(I) If C' = {s1} and A € F}(C),

(bM(C; AT) =T —r)- All\l + (Tio1 — 791) - A12Al + (Fiz1 — 731) - A13A1+
(F211 - 7”11) - Ag1 + (F221 - 7”21) - Agor + (F231 - 7“31) - Aoz
<0 Ay +0- Ay +3- Az + 2 Ao + 1+ Aggg +0- Aoy
=0+0+2-9

= Wq.
(1) If C = {b;} and A € F1(C),
6" (C,AT)

-~ -~

(vir — Tian) - 121\1’11 + (vig — Dio1) - Aior + (viz — Tis1) - Aisa
(va —Tar) - Ain + (vie — Tizn) - Ajor + (vis — Diz1) - Aisa
U;.

A

(IT1) If C = {by, 51} and A € F,

¢M(Cv /AL I =(vi1—rn)- 2111 + (v12 — 721) - /Al121 + (v13 — 731) - 2l31+
(To11 — 711) - A211 + (Ta21 — 721) - A221 + (Ta31 — 731) - A231 (27)
=1- A111 +2- A121 +3- A131 + A211 +1- A221 +0- A231

If A € F3(C), we have two possibilities:
(1) A\Qll = 121\221 = A\le = 0, in which case,
¢M(C, 121\7 I =1 12[111 +2- 12[121 +3- 121\131
<1-442-5+43-1
=17
< up + w;.
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(11) A\le = 9, A\le = 0, 121\231 = 1, in which case,

GM(CLAT) =1- Ay +2- A +3- Ay +2-941-040-1
<1-1+2-5+43-0+2-9+1-0+0-1
=17
= Uy + wi.

(IV) If C' = {by, 51} and A € F°,

¢M(C7 A\; I = (va1 —rn1) 'AA\211 + (vag — 791) - 1;4:221 + (vag — 731) - 121\/2\31‘1‘
(F111 ~ 7“11) : A11A1 + (F121 N 7“21) : A131 + (F131: 7"31) : A1A31
=2 Ao +1-Ago1 +4-As314+0- A1 +0- Ayor +3- Aysp.

If A € F3(C), we have two possibilities:

(1) Alll = A121 = A131 = O, in which case,

¢M(Ca A\, ry =2. A\211 +1- A\221 +4- 121\231
<2-941-0+4-1
= 22
< ug + ws.

(11) A\lll = 1, A\121 = 5, 12[131 = O, in which case,

OM(C,AT) =2 Agy +1-Agyy +4-Aggy +0-140-5+3-0
<2:-941-0+4-14+0-1+4+0-5
=22

= Ug + wy.

(V)IfC = {by, by, 1} and A € F3(C) then, ¢V (C, A,T) = T(A). Hence, " (C, A,T) <
T(A) = uj + ug + wy.
Thus, we can conclude that for all C € BUS and all A € F3(C), S ui+ Y wy >

R ieBC keS¢
¢™(C, A,T) holds. Hence, (11,16, 6) € GS®.
We now check that (11,16,6) ¢ GS?. Assume there exists IV € D such that for all
C C BUS and all A € F*(0),

> ouit Y wy > ¢M(CL AT (28)
ieBC kes®
. ~ (151 P
holds. Consider {by,s1} C BUS and A = 50 0 . Observe that A € F?({by, 51}).

By (28),

oM ({by, 51}, AT)=1-142-5+3-14 (I, —5)-9 < 11+6. (29)

25



1 50

Now, consider {bs} C BUS and A = < 0 0 1

(28),

) . Observe that A € F2({by}). By

M({b2}7 A7 F,) = (7 - F,211) 9+ (5 - F,231) -1 < 16, (30)
and hence, by (29) and (30),

which means that I',;;, > 4. Consider now the assignment A= ( (5) (5) (1) ) , and

observe that A € F2({by, s1}). By (28),
M ({br, 51}, A, T") = 54+ 10 + (Thy, — 1) < 6+ 11, (31)
and hence, by (31) and (30),

54104+ (Tgg — 1)+ (7 —T5;) - 9+ (5 — I'yyy) < 33,

which means that I'y5; > . Finally, consider {s;} C BUS and A = ( ; (5) (i ) ,
Observe that A € F2({s;}) and

Y({s11, AT) =Py —5) -1+ Dy = 5) -5+ (Tyy = 5) - 9+ (Thgy — 1) - 1
(I 211~ 5) -9+ (g — 1)

( —5)-9+4—1

|| ARV

Hence, ¢ ({s;}, A,T') > 7 > 6 = w;, which contradicts (28). Thus, (11,16,6) €
GS*\GS? holds.
. N 6 4 4
b) Second, we will see that (u,w) = (11,13,9) € GS*\GS". Let I' = | 3 4
3

and C' C BU S. We distinguish between two cases:
() If C € BUS, C # {b1, 5} and A € F'(C), we can show using a similar argument
to the one used in case a) that ¢ (C, A,T) < > wu; + > wy holds as well.

i€eBC keSC

() If C' = {by, 51} and A € F°,

(bM(Ca IZL I = (v —rn) 'Azzinl + (v12 — 791) - 12[121 + (v13 — 731) - 121\131‘1‘
(Ta11 — 711) - A211 + (Tg21 — 791) - A221 + (T'og1 — 731) - A231 (32)
=1 A111 +2- A121 +3- A131 + A211 +1- A221 +3- A231

If A € F2(C), we have three possibilities:

26



(1) If 121\231 =1 and 121\211 = 9,

OM(C,LAT) <1-Ay+2- A +3- Ay +2-94+1-0+3-1
<1+104+6+3
=20
= U + wi.

(11) If 121\231 =1 and A\Qll = 0,

GM(C,AT) <1-Ayy+2- A +3- Ay +2-04+1-0+3-1
<1-5+10+3
— 18
< uy + wy.

(111) If A\231 = 0,

¢M(CaA\7F) :1'%111‘1—2'2121‘1—3'2131;1—%'A\211+1'0+3'0
=1- A +2-5+3-0+2 Ay +1-0
< uyp +wy,

where the last inequality follows from what we have established in cases (i) and (ii)
above.

Thus, we can conclude that for all C € BUS and all A € F2(C), S ui+ 3 wy >
i€BC keS¢
»"(C, A,T) holds. Hence, (11,13,9) € GS*.
We now check that (11,13,9) ¢ GS*. Assume there exists IV € D such that for all
C C BUS and all A € F}(C),

S oui+ S w, > MO, AT (33)

i€BC kesSC

5 5 0

holds. Consider {b;, 51} C BUS and A = ( 10 1

By (33),

) . Observe that A € F1({by, s1}).

M ({by, 51}, AT) =1-542-543-0+4 (hyy —5) -4+ (Thy —1)-1 < 11+9. (34)

1 50

Consider now {b;} C BUS and A = ( 0 0 1

(33)7

) . Observe that A € F2({b:}). By

¢M({b2}7 A7 F,) = (7 - F,211) 9+ (5 - I‘,231) -1 <13, (35)
and hence, by (34) and (35),

5+10+4 (I —5) -4+ (g — 1) - 14 (7= T%y) - 94 (5 — I'ygy) <33,
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~ 1 1
which means that I'};; > 6. Consider now the assignment A = ( 9 0 > . Observe

that A € F1({b1, s,}) and
oM ({br, 51}, A T) =1+ 1043+ (I, —5)-9 < 11+9. (36)
Hence, by (36) and (35),
141043+ (D —5) - 94 (7T—T0) - 9+ (5 — Thy,) < 33,

1
which means that I'y3; > 4. Finally, consider {s;} C BUS and A = ( 9 (5) (; ) :

Observe that A € F*({s1}) and
¢M({51}> A, Fl) (F,111 - 5) 1+ (Fllzl - 5) "5+ (P,211 - 5) "9+ (F,231 - 1) -1

(F/211 _5)'9+(F,231 - 1)
(6—-5)-9+4—1
12.

IR AVARAVAR

Hence, ¢™ ({51}, A,T") > 12 > 9 = wy, which contradicts (33). Thus, (11,13,9) €
GS*\GSs'.

4 4
c) To finish, we will exhibit a vector in GS'. Let (u,w) = (0,0,33), " = < (; 3 5 >

and C' C BU S§. We distinguish between two cases.
(I) If C' C B then, ¢"(C, A,T) = 0 holds for all A € F1(C). Hence, ¢" (C, A,T) <
Soup+ > wy.

ieBC keS¢
() If s, € C and A € FY(C) then, " (C, A,T) < TM(A) < 33 (since A € F° holds).
Hence,

¢M(07A7F) S 33 =wp = E ul+ E Wy,

i€BC kesc

which means that (u,w) = (0,0,33) € GS*.

6.2 CT =0 in Example 1
Remember that the unique optimal assignment in the market of Example 1 is A =

( L50 ) with 7™ (A) = 33. Let ' = ( g ;l j ) . By Remark 1, v ({by, ba, 51 })

9 0 1 X
550

= 33. Observe that A = ( 40 1

> € FY({b1, s1}), thus

VT ({by,51}) > oM ({br, 51}, AT) =5+10+ (¥ —5) -4+ (4-1)-1=2,

1 50

Now, consider {bs}. We have A = ( 0 0 1

) € fl({b2}>, thus
I ({bo}) = M ({ba}, AT) = (T— 1) -9 4 (5—4) - 1= 13,
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Therefore, v'7({by, s1}) + v ({ba}) > 2 + 13 = 13 > 33 = 0! ({by, by, 51}), where
we deduce that the game (B U S, v'T') has empty Core.

6.3 Proof of Lemma 2

We first prove the statement in Lemma 2 for ¢ = —1. For this purpose we will use the
following notation. Fix p € ]Rf. Define for every i € B

v;j —p; if there exists j € V7 (p)
. 37
7:(p) { 0 otherwise, 0

and for every (j, k) € G x S

‘ . Dj — Tjk ifpj—rjk>0
T (P) = { 0 otherwise. (38)

The number ,(p) is the net valuation obtained by buyer i from each unit of the goods
that he wants to buy at p and the number 7;;(p) is the net gain obtained by seller k&
from each unit of good j that he want to sell at p.

Let (AP, A%) € F~1. Since (p, A) is a -1—equilibrium, for each i € B,

> (vig = pj) - Agje = 75(p) - ds.

ik
But d; > 3, A7, and (vy; — p;) < 7;(p) for all j. Hence, for each i € B,
> (i = py) - A > 2 (vij — pj) - Ay
jk ik
Thus, (19) holds. The proof that (20) holds as well proceeds similarly and therefore
it is omitted.
To prove the other implication, consider a pair (p, A) satisfying (19) and (20) for
all (AB, A%) € F~1. We will show that (p, A) is a -1-competitive equilibrium.
First, we will check that (E.D) holds. Since A is feasible, (D.a) and (D.b) hold.
To check that (D.c) holds assume that for i € B, V7 (p) # 0. We want to
show that 3°,cg>(,) 2y Ajk = di. Assume there exists ¢’ such that V7 (p) # 0 but
Zjevj,(p) Son Ak < dy. Let j' € V7 (p) and let AP be such that

dy if j=7'
AR =<3
z,; vik {o if j £ 4.

It is clear that (AP, A%) € F~1 for some A%. Now we have that >k (vig —pj) AR =
v (p) - dir. We distinguish between two cases.
Case 1: Z]k Ai’jk < dz'/. Then,

Zk(vi'j - pj) : Agjk =7u(p) - dir > vu(p) - ZkAi’jk > Zk(vi'j - pj) - Airjis
J J J
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which contradicts (19).
Case 2: Z]k Azljk; = di’~ Then,

Zk(vi’j —pj)- Aﬁjk =%y(p) - div = v (p) - Zj >k A

j
=7(p) - (Zjevj,(p) Zk Ai’jk) +7y(p) - (ngv;(p) Zk Ai’jk)
> 2 jevi ) 2ok (Virg = D) - Avj 200> ) (Vg = P3) - g Airji
= > (i — pj) - Auj,

which contradicts (19).

To check that (D.d) holds, assume that for i € B, ), A;jr > 0. We want to show
that j € V7 (p). Assume there exist ' € B, j' € G and k' € S such that Ay jy > 0,
but j' ¢ V7 (p). Define

0 if (4,5,k) = (¢, 5, k).
We have that (A%, A%) € F~! for some A% and in addition,
S —py) - A= 2 (g —py) - A > (v — pj) - Aigie

jk jk: jk
(3:k) (" k")

AB o { Aijk lf <i7j> k) 7é (ilajla k,)
ijk T

Hence, (p, A) does not satisfy (19). Thus, (E.D) holds.

Proceeding similarly, we can check that (E.S) holds, since for (p, A) to satisfy (20),
it is necessary that each seller £ € S sells all the units he owns of each good that
produce a strict positive net gain and no unit of the goods producing negative net
gains.

We now proceed to prove Lemma 2 for the case ¢ = 0. For this purpose we will
use the following notation. Fix p € RY and j € V7 (p) for 2 = 1,...,J, define
v.:(p) = (vij — p;). Moreover, if Vi7(p) = 0 define ~,,(p) = 0. Let (p,A) be a
0—competitive equilibrium and assume there exist i € B and A* € F such that

> (vij —pj) - Ajje > 2 (vij — ps) - A

ik ik
If (vij — pj) <0, then A;;;, = 0 for all k since (p, A) is a 0—competitive equilibrium.
Hence,

J
Z_:l’yzi(p) > At X (v —py) Ay =2 (v —py) - Al

J€V:~(p) JEUVIZ (p) Jk

kES keS
> > (vij — pj) - Aiji
I
J
=2 7)) 2 Ay
z=1 J€Vi”(p)

keS
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Then, since > (vij — p;) - 4jj, < 0 holds,

JEUVE (p)
keS

J J
o) Do A > v.up) X Ak (39)
=1 JEVE> (p) =1 JEVE> (p)

keS keS

Assume > Aj > > Ay Since A and A* are feasible, Vi”(p) # 0 and

JEVZ(p) k JEVIZ(p) k
>, A< > Ajy <dy. Then, A(i) ¢ D;i(p). Hence,
JEVE” (p) JEVEZ (p)
kES kES
> A< Y Ak (40)
JEVI () JEVIZ ()
kES kES

Let z* be the minimum 2z = 1, ..., J such that Z Yo A > X A (2
1jevi>(p) z=1jevi=(p)
kES kES

exists by (39) and (40)). Clearly, V="~ (p) # 0. Thus,

Z E Awk - Z dit.

1jevi=(p)
kes

We distinguish between two cases.

Case 1: Z d.; = d;. Then, Z > Af, > d;, which contradicts that A* is feasible.

ijk
z=1 z= 1j€VZ>( )
keS
Case 2: Zldzi < d;. Then, d.; = min{d; — 325", dns, D jeve> () @it = 2jeve ) @i

for all z=1,...,2*. Hence, > > Ajjp= Z > jev> (p) @j- Thus,
#=1jevi> (v

keS
Z Z AZ]kJ > Z Z Qj’
1jevi=(p) z=1jevi=(p)
keS

which again contradicts that A* is feasible.

The fact that >, (pj — ) - e > 35505 — 1) - Af
deduced similarly.

To verify that the other implication holds as well, assume that the pair (p, A) sat-
isfies (19) and (20) for all feasible A*. We want to show that (p, A) is a 0—competitive
equilibrium. First, we check that (E.DO) holds. Since A is feasible, (D.a0) and (D.b0)
hold.

To check that (D.c) holds, assume V= (p) # 0. Next, we show 3, ¢=>(,) Do) Ajx =
d.;. Assume there exist i’ and z* such that V7 ~(p) # 0 but

S Y Avje < dyse. (41)

JEVE > (p) F

holds for all £ € S, can be

ijk
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Without loss of generality, we may assume that Zj v (v) > & Aji = di holds for all
z < z*.We have d -y < ZjGVf,*>(p) Q;. By (41), there exist k* € S and j* € Vi~
such that A+ < gj=x=. We distinguish between two cases.
Case 1: Y Ay, < dy. Define A* as follows:

jk

Ak if i =4, j € Vi~ (p) for some z < z* or z* < z for all k
o Ajp+1 ifi=4d,j=7"and k =k*
CLEE N P ifi=1i,j€V:>(p),j#j" and k # k*
0 otherwise.

We have that A* is feasible. Moreover,

J J
> (vig —pj) - Al = > 7ip) X Al > Yo 74(p) D A
ik z=1 JEVZ> (p) z=1 JEVE” (p)
keS keS
> (vij — pj) - Aijis

)
e

which contradicts (19).
Case 2: 3 Ayjx = dy. Then, by (41), there exist 2 > z, j € G and k € S such that
ik

j € Vi (p) and Aysp > 0. Now define A* as follows:

(A if i =4, j € Vi7(p) for some z < z* and for all k
Aijp+1 ifi=7,j=7"and k = k*
Agr—1 ifi=4j=jand k=k
Ay ifi=1ij €V~ (p)and (j,k) # (5%, k*)
Ak i=1, j € V?(p) for some z > z* and (j, k) # (J, k).
0 otherwise.

A:jk = 9

\

It is immediate to check that A* is feasible. Moreover,

J J

D05 —p) A = Lra) X A > ) X A

T z=1 JEVE (p) z=1 JEVZZ (p)
keS keS

> Zk(vij —pj) - Aiji-
J

which contradicts (19).

To check that (D.d0) holds, assume >, A;;x > 0. We want to show that j € V5 (p)
for all i € B. Assume there exist i/ € B and j° € G such that >, Ay, > 0 but
j' ¢ V7 (p). Define

0 ifi =4 and j ¢ V;(p) forall k€S
Aj = Ay ifi=1"and j € Vi (p) for some z for all k € S
0 otherwise.
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It is immediate to check that A* is feasible. Moreover,

J

Z(UU ) A;,kjk = Z 7zz(p) Z Azgk Z ’YZ’L(p) Z Aiﬂf

Jjk z=1 J€VE” (p) J€VE~ (p)
keB keB

> (Uzg D;) - Aijks

<.
o

which contradicts (19). Namely, (E.DO) holds.

Now we check that (E.SO) holds. That is, for each seller k& € S, (>, Aijx); €
SY (p) . Since A is feasible, (S.a0) and (S.b0) holds.

To check that (S.c0) holds, assume Vi~ (p) # () for some z =1, ..., J. We want to
show that Z]€Vz> B; = s.(p). Assume there exist &’ and z* such that Vi, ” (p) #
0 but for z =1,.

> 2 Ay < s (p) (42)

JEVE 7 (p)
Without loss of generality we may assume that > v (p) > Aijir = s.p(p) for all
z < z*. We have s, (p) < mln{zjevtz >(p) Gk, D — Zm 1 Smi () }. Then, by (42),

z*—1
z Z Azgk’ <D - Z Smk’ =D - Z z Z Aljk’
JEVE > (p) m=1JEV,”(p) 1

Hence, Zi:1 Zjev;?(p) > Ay < D.Thus, 37,053 00, Zjevgf(p) Aijer < Dien i
Then, there exists i* € B such that 37—, Zjevgf(p) A jiy < di=. Moreover, by (42),
we know Zjev;j‘>(p) Yo A < Zjevzf>(p) ¢jr- Then, there exists j* € Vi~ such
that Y, Ajj«p < gj. Define A* as follows:

Aijk if k =k and j € V7 (p) for some 2z < z* or 2* < z for all i
Aijp+1 ifi=1d"j=j"and k=F
UET) Ay ifi=1i,j€V:>(p),j#j" and k # k*

0 otherwise.

It is immediate to check that A* is feasible. Moreover,

Sy ) Ay = Swa) X AL

ij z=1 Ji€Vi” (p)
ieB
J
> Yoma(p) Do Ak > Z( —1ik) - Aijk,
z=1 JEVE (p)
i€B

which contradicts (20).
The proof that (S.d0) holds as well is similar, and therefore omitted. |
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